skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baghudana, Ashish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The proliferation of Internet-enabled smartphones has ushered in an era where events are reported on social media websites such as Twitter and Facebook. However, the short text nature of social media posts, combined with a large volume of noise present in such datasets makes event detection challenging. This problem can be alleviated by using other sources of information, such as news articles, that employ a precise and factual vocabulary, and are more descriptive in nature. In this paper, we propose Spatio-Temporal Event Detection (STED), a probabilistic model to discover events, their associated topics, time of occurrence, and the geospatial distribution from multiple data sources, such as news and Twitter. The joint modeling of news and Twitter enables our model to distinguish events from other noisy topics present in Twitter data. Furthermore, the presence of geocoordinates and timestamps in tweets helps find the spatio-temporal distribution of the events. We evaluate our model on a large corpus of Twitter and news data, and our experimental results show that STED can effectively discover events, and outperforms state-of-the-art techniques. 
    more » « less